SPREADSHEET-BASED INTERACTIVE GRAPHICS:
FROM PROTOTYPE TO TOOL

Nicholas Wilde and Clayton Lewis

CU-CS-445-89 October 1989

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship in Science and Engineering from the
David and Lucile Packard Foundation.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
OCT 1989 2. REPORT TYPE 00-00-1989 to 00-00-1989
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Spreadsheet-Based | nteractive Graphics. From Prototypeto Tool £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 22
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

SPREADSHEET-BASED INTERACTIVE GRAPHICS:
FROM PROTOTYPE TO TOOL

Nicholas Wilde and Clayton Lewis

CU-CS-445-89 October 1989

Department of Computer Science
Campus Box 430

University of Colorado @ Boulder
Boulder, Colorado 80309-430

This research was done under the auspices of the University of Colorado’s Center for
Space Construction, NASA Grant NAGW-1388. NoPumpll was created using XVT, a

system independent programming toolbox for windowing systems, graciously supplied
by API], Inc.

Spreadsheet-based interactive graphics: from prototype to tool

Nicholas Wilde and Clayton Lewis
Dept of Computer Science
University of Colorado, Boulder

Abstract

The NoPumpG prototype (Lewis, 1988, Lewis,in press) suggested that the
spreadsheet model of computation could simplify the creation of some
types of interactive graphical application when compared with other
approaches. We report here experience in developing an enhanced follow-on
system, NoPumpll, and describe three applications developed using it. We
conclude that (1) the potential advantages of the spreadsheet model are
realized in this application experience, (2) revisions to the prototype
design have permitted an increase in the complexity and scale of
applications, and (3) there remain limitations in the current design which,

if redressed, would further enlarge the scope of application. More generally
we conclude that alternative computational models are an important area
of exploration for HCI research.

Introduction

To what extent are underlying models of computation responsible for the
complexity users encounter in dealing with computing systems? While
most modern application systems mask the underlying model very
effectively, users who wish to create or shape their own applications must
still confront and work with a computational model: procedural, functional,
or some other. The characteristics of these models may have important
impact on the ease with which applications can be expressed, but the
usability implications of such models have been little explored in the
literature (Lewis 1989).

Following suggestions in Draper (1986) (see also Lewis and Olson,1987)
one of us (CL) developed the NoPumpG prototype to explore whether the
model of computation underlying the popular spreadsheet paradigm could

be extended to support the creation of interactive graphics applications.
This paper reports experience in developing this idea to the point of actual
application.

The spreadsheet model

According to many, the spreadsheet has played a major role in the
microcomputer revolution. By putting computational power directly in the
hands of users, it has allowed many non-programmers to develop their own
customized applications.

By providing automatic computation and recomputation, the spreadsheet
supplies a computational engine that is fundamentally different to that
found in the standard procedural model. Because the spreadsheet is based
on the propagation of values, and not the sequential flow of control found

in most programming languages, it is a good deal simpler for many small
applications. The user does not have to worry about such concepts as flow
of control, parameter passing, or recursion, for example.

Another large part of the spreadsheet's appeal is its automatic
management of the I/O process. By providing convenient facilities for the
input and output of data to the spreadsheet application, the spreadsheet
acts as an l/0O pumping engine. This frees the user to worry about the
specification of their problem, instead of the I/O code. By allowing users
to modify data that has already been input, and providing automatic
recomputation of the problem at hand, the spreadsheet allows a highly
interactive form of "what if" to be played between the user and the
computer, encouraging experimentation while providing immediate
feedback. By providing direct and immediate access to intermediate values
in the computational process (through the use of intermediate cells), the
spreadsheet allows rapid and easy debugging of applications, should this
experimentation lead to problems.

Applying the spreadsheet model to graphics
The idea behind NoPumpG and NoPumpll is to extend the spreadsheet notion

to include interactive graphics. By allowing the user to create graphical
primitives, and tying the behavior of those primitives in with a

computational and I/O engine based on the spreadsheet model, NoPumpG
and NoPumpll allow the user to quickly and easily build relatively complex
applications with a high degree of interactivity in them.

NoPumpG combines interactive graphics with spreadsheet machinery in the
following manner. Several graphical primitives are supported in a "draw
program"” fashion. Each of these primitives, when created by the user,
comes with a number of spreadsheet cells. These associated cells both
control and report various attributes of the primitive's behavior and
appearance. For a typical primitive (say, a line) one might have one or
more pairs of X,Y coordinate spreadsheet cells, and a visibility spreadsheet
cell. The linkage between cells and primitives is bidirectional. This

means that a user can either drag a particular primitive about the screen,

in which case the corresponding spreadsheet cells are updated, or input a
number or formula into a spreadsheet cell, in which case the corresponding
primitive's behavior or appearance changes accordingly. Both values and
formulae are supported in NoPumpG's cells. The operators available for
formulae allow one to do operations with other spreadsheet cells,

resulting in various behaviors being manifest through the graphics. As an
example, a line can be forced to stay vertical by causing the X cells of both
ends to be equal. If the user moves one endpoint of the line, it only varies
in the Y direction, staying vertical and just varying its length.

The resulting applications have a wide variety of uses. Possible
applications include the programming of simulations and modeling for
physical scientists and engineers, where a high degree of interactivity

with the data and model is desirable to allow the exploration of many
different relationships between data sets. Other uses include as a teaching
aid for subjects such as physics or geometry, where its interactive nature
would allow the programming of interactive simulations for the subject
matter at hand. NoPumpG or NoPumpll can also serve easily as a highly
dynamic and interactive front end to other applications.

Comparison with other approaches
Borning's ThingLab (1979,1981) allows interactive graphics to be

developed using objects specified in SmallTalk. Interactions between
graphical primitives are specified as constraints on the objects behavior.

As these constraints are fully bidirectional, they represent of a level of
complexity and power above NoPumpG's simple spreadsheet propagation
mechanism. The resulting system, while more powerful than NoPumpG, is
considerably more complex than NoPumpG.

Smith's Alternate Reality Kit (1986,1987) provides a means of modeling
physical systems in a graphical framework. ARK is implemented on top of
SmallTalk and provides a means of attaching SmallTalk methods to
graphical objects by attaching "pushbuttons" to the appropriate object.
Objects called "interactors" are available that allow for influences

between and interactions among different graphical primitives.

Both Thinglab and Alternate Reality Kit provide mechanisms that are

different from, and in some ways more powerful than, the simple

spreadsheet propagation mechanism that NoPumpG and NoPumpl! are based
on. Both rely on SmallTalk to ultimately specify the relationships between
objects. While both systems attempt to shield the user as much as

possible from this level of programming, the procedural model of

computation is still the final arbiter of interactions. Thinglab and ARK

both distinguish the "user" of the system from the programmer. The notion

is that "someone else" will provide the necessary SmallTalk objects for

the user to manipulate in their simulations.

In the NoPump applications, on the other hand, there is no underlying
language based model for the user to deal with. The closest thing to a
language statement is a spreadsheet cell formula, which may contain a
boolean and/or a real valued arithmetic statement. All interactions are
specified directly in the top level of the system, and their is no way for
the user to go below this. While this results in a somewhat less powerful
system than the others, it also results in a less complicated system, from
the user-as-programmer point of view.

Fabrik (Ingalls, et al, 1988) is a visual programming application which
provides a toolkit of objects that a user may "wire together". Because it
relies on dataflow as its primary model of computation, it is a closer to
NoPumpG than both ThingLab and ARK. However, the toolkit of objects
provided by Fabrik is a good deal richer (and consequently, more complex)
than the simple objects provided in NoPumpG or NoPumpll.

From prototype to tool

Experience with the NoPumpG prototype quickly revealed that the resulting
system, while interesting, suffers from some limitations that become
overwhelming when using NoPumpG for larger scale applications. For
instance, some aspects of the graphical primitives are not
controlled/reported by spreadsheet cells, making them impossible to
modify in the current system. Collision detection, for example, or
reporting when a particular graphical object has been selected (so
behaviors other than dragging, such as appearing/disappearing when
clicked on, could be implemented) is not supported in the NoPumpG
prototype. A number of attempts to add different behaviors to primitives
by adding different cell types resulted in a system that was more useful,
but conceptually more complex than, the original system.

As the number of desired behaviors increased, so did the number of types
of cells. As each new cell type was added to each of the already existing
primitive types, the resulting matrix quickly became unwieldy. This also
meant that the instantiation of a particular primitive brought with it a lot

of "cell baggage", regardless of whether the user was interested in the
particular attributes those cells controlled. To avoid this, certain cell

types were added only to those primitives where it was thought they would
be most useful. This had the effect of decreasing the consistency, across
primitive types, of the attributes available for inspection and control.

New primitive types were also envisioned that would perhaps have
completely different attributes to control. These new types of primitives
would add to the increased complexity of the system.

In addition, NoPumpG suffers from a malaise common among spreadsheet
applications. Without some levels of abstraction available, as the size of
the problem grows, so does the size and complexity of the resulting
spreadsheet. It is not uncommon to create spreadsheets with a great deal
of inter-connected cells for what seems like a small application.

The primary issues we wished to address in the follow up system, then,
were:

Cell explosion

There is a tendency in the prototype for anything but trivial applications
to require large numbers of cells. This results from two primary factors:
the decision to limit spreadsheet formulae to a single binary operator
each, and the tendency to create unneeded cells every time one a new
primitive was created. '

Control cell explosion

As the desired number of attributes we wished to control increased, so did
the number of control cells per primitive. This only served to exacerbate
the first problem above.

The need to allow users to follow propagation / control paths easily

When the user must manage a large number of primitives / cells, it often
becomes difficult to quickly track which cell is controlling which

primitive, and what the propagation path is between cells.

The NoPumpll design

To address these issues, several steps were taken in the design of
NoPumpll:

Allow arbitrary formula complexity

The desire here was to limit severely the number of cells which were
created as simple holding places for intermediate variables, thus reducing
overall the number of cells needed for any application. This is a trade off
because part of the spreadsheet's appeal as a model of computation is its
automatic management of the 1/0 process and the ready availability of all
intermediate values in the computational process.

Allow arbitrary cell type to be hooked to arbitrary primitive type

Instead of automatically creating certain control cells when a primitive is

created, NoPumpll allows the user to select control cells from a menu and
attach them to a given primitive. This has the desired affect of reducing
the number of unneeded control cells that get created, and by allowing any
type of control cell to be attached to any type of primitive, retains

regularity in the primitive/cell relationships.

There are four types of primitives available in NoPumpll: Line primitives,
Sketch primitives (small bitmaps), Text primitives (strings), and display
primitives (which simply allow the display of a particular cells value
without the attendant cell). The are eight types of control cells available:
X and Y control cells, Visibility control cells, Pen control cells (turns the
attached primitive into a pen that leaves a trail of ink on the screen when
moved), Button and Toggle cells (respond to clicks on the attached
primitives), and Collision detection cells. In addition, there are two types
of cells available that don't control primitives directly, but can be used
indirectly through cell formulae: ordinary cells (available for holding
intermediate values), and clock cells (which are tied in to a system clock
and allow animation to be created easily by making X and Y control cells
dependent upon the clock's value)

A side effect of this decision is that an arbitrary number of primitives can
be attached to the same cell. This makes for some surprisingly easy and
natural behaviors to be prescribed: for instance, it is trivial to create a
line that remains vertical no matter where it is dragged on the screen:
simply create a line primitive, and attach the same X control cell to both
ends of the line.

Use visual clues to tell who is attached to whom, but also give the user
active methods of following propagation and control paths.

When a particular cell is selected in NoPumpll, two things may occur if
the user elects: 1) both the cell, and all primitives it is attached to that
are visible will become highlighted. 2) lines will be drawn explicitly
connecting the cell to those primitives it is attached to. The same things
may occur in reverse if a user clicks on a given primitive. Both of these
have the effect of telling the user about connections already in place.

In addition, a dialogue allows the user to control the visibility/invisibility

of all control cells in a given application. This allows the user to focus in

on only those cells that are important at the moment. The same dialogue
has tools available to allow chasing up or down a dependency graph, going
from cell to its dependents, or to those cells that depend upon it, and
making only what the user desires to see visible on the screen.

Application experience with NoPumpll

By incorporating the above refinements into a new application based on the
prototype, the application has been scaled up to a level where real
applications are a possibility. The following details some applications we
have developed using the system:

Curve generation

Figure 1 shows a screen image from the use of NoPumpll to investigate a
theoretical argument in tropical ecology. Janzen (1970) presents a model
in which the distribution of tree species in tropical forests is tied to
patterns of predation that selectively kill seeds or seedlings near parent
trees. Janzen presented rough sketch graphs of the relationships which
seemed inaccurate in some respects. NoPumpll was used to produce
quantitatively accurate graphs based on Janzen's drawings.

The spreadsheet model worked effectively in this application, allowing the
user to experiment easily with different formulae, looking for curves that
matched Janzen's curves. It was a simple matter to plot the product of two
curves, as required in the application. It also proved easy to plot families
of related curves, and to rescale and shift plots as needed. While all of
these functions would be provided by a mathematical plotting package,
with much more sophistication in labeling, varying line styles, and the

like, the NoPumpll solution was quick and effective. The application works
from first principles of Cartesian geometry and does not require the user
to learn conventions of curve specification and formatting that would be
imposed by a special-purpose plotting application.

NoPumpll lacks one facility that would have been useful in this
application, the ability to draw a curve freehand and capture X-Y pairs

from the drawing. A version of such a facility could be written within
NoPumpll, in which the system would automatically construct a
piecewise-linear approximation to a freehand curve, but this was not done.

A simple weather model

For many physical applications, the actual calculation of data is a small
part of the problem. The rest lies in formatting and presenting the data in
a suitable format for easy understanding. Such is the case illustrated in
Figure 2. The actual problem is quite simple. It consists of a simple
radiation balance model of the the lower kilometer of the earths
atmosphere, and attempts to predict the diurnal cycle of temperature that
will occur given a initial set of conditions such as latitude, longitude,

initial temperature, and sky condition (amount of low, middle, and high
cloud). By placing the appropriate formulae for the model in ordinary cells,
and creating a sketch with an attached pen that is time dependent on the X
position and temperature dependent on the Y position, graphical output
from such a model is almost trivial to achieve. To make the model more
interactive, three slide controllers were built into the application (using
NoPumpll primitives) and their output values used as the values for low,
middle and high clouds. Figure 2 illustrates a one day cycle of temperature
with no clouds followed by a one day cycle with a 50 % cloud coverage at
the middle layer.

Software simulation of a robotics ensemble

A final application is illustrated in Figure 3. Several researchers at the
University of Colorado - Boulder are interested in the problem of
scheduling several independent robots to perform a given task. A model
often used in this application is the robot as finite automaton. By creating
an ensemble of automata, and restricting the possible states of the
ensemble as a whole, forbidden interactions between the different robots
can be represented. We have been charged by this group to create a
graphical means of representing these automata, and the interactions
between them. Using NoPumpll to create the automata, with several clock
cells to drive the individual automata and several button objects to
control the clock cells, we have been able to create a software simulation
of the particular robotics ensemble in question. The resulting application

can be used to test sequences of elementary moves to determine if the
result in a legal configuration for the robotics ensemble, or not. Figure 3 is
a software simulation of a ensemble consisting of a cuvette rack (that can
be moved up or down), a pipette that can be aimed at a particular cuvette
or at a fluid reservoir, and a solution reader / assayer that can be aimed at
a particular cuvette and "turned on".

Conclusions

The prototype NoPumpG was successful enough to encourage us to develop
a follow up system. By building a new system which capitalized on the
experiences gained with the prototype, we were able to create a system

that is both more usable and more powerful for real applications.

Our experience with the NoPumpll allows us to conclude the following:

The potential advantages of the spreadsheet model can be realized in an
interactive graphics application

The automatic management of 1/0 in a spreadsheet application can be a
boon in many areas where "quick and dirty", or interactive problem solving

is useful. By allowing an experimental style of application building, the
spreadsheet model allows relatively complex applications to be built in

short amounts of time. By managing the automatic computation and
recomputation of values by dependency propagation, the spreadsheet model
eliminates much of the bothersome "one step at a time" approach that new
users may find artificial in procedural or functional models, and allows

"what if" capabilities to be built into applications without additional

difficulty.

Revisions to the prototype design permit an increase in the complexity and
scale of applications

By allowing the user to specify what information they wish to see
controlled (and not automatically providing it for them), NoPumplI still
retains many of the virtues of the spreadsheet model without causing the
user to be overwhelmed in detail. The tendency to get lostin a

10

proliferation of cells has been curbed to a large extent.

Redressing limitations in the current design could further enlarge the
scope of application.

Many applications require the same assemblage of primitives and cells to
be created more than once (i.e. the slide controllers in the weather model
or the button objects in the robotics ensemble). We would like to allow
the creation of user macros for assemblages of primitives and cells.

In addition discussions with users in the case of the robotics ensemble
have pointed out some additional capabilities we would like to include: the
ability to read in a sequence of robotic moves as a file script for running
the software model over. A general capability for allowing models to be
run under control of a previously created script could be useful for much
more than just the robotics ensemble application. Combining the
capability of being able to replay simulations with the "what if" aspects of
spreadsheets would provide a powerful experimental capability for many
different applications. For instance, the weather model could be run and
rerun with different parameters over several days worth of simulated
cloud cover progressions.

A more general lesson we draw from our experience with NoPumpG and
NoPumpll is that alternatives to the familiar procedural model of
computation are worth further serious exploration. The spreadsheet model
offers a new look at computation that has considerable generality,

certainly beyond that of the very successful commercial spreadsheet
systems. Analogously, other models little explored in HCI research, such as
functional programming or equational programming (Sethi, 1989, O'Donnell,
1985) may permit us to deliver more power at less conceptual cost for
important areas of application.

Acknowledgements.

This research was done under the auspices of the University of Colorado's
Center for Space Construction, NASA Grant NAGW-1388. NoPumpll was
created using XVT (the Extensible Virtual Toolkit), a system independent
programming toolbox for windowing systems, graciously supplied by API,

11

Inc. Brent Reeves created the parser that NoPumpll uses for expression
evaluation. The NoPump team from CL's User Interface course (Dennis
Colarelli, Brent Reeves, Chase Turner, and Diane Stockton) contributed to
the initial conception and design of NoPumpll. John Blanco and other
members of the Construction Operations Branch of the Center for Space
Construction were instrumental in evaluating the NoPumpG prototype.

12

References

Borning, A., 1979, "ThingLab - A constraint oriented simulation
laboratory", Xerox PARC Technical Report SSL-79-3, Xerox Palo Alto
Research Center.

Borning, A., 1981, "The programming language aspects of ThinglLab, a
constraint oriented simulation laboratory", ACM Transactions on
Programming Languages and Systems, Vol. 3, p. 353.

Draper, S.W., 1986, "Display managers as the basis for user-machine
communication”, In D.A. Norman and S.W. Draper (Eds.) User Centered
System Design: New perspectives on human-computer interaction ,
Erlbaum, Hillsdale, NJ, p 339.

Ingalls, D., S. Wallace, Y. Chow, F. Ludolph, and K. Doyle, 1988, "Fabrik, A
visual programming environment", Proc OOPSLA '88, ACM, New York, NY,
p. 176. :

Janzen, D.H., 1970, "Herbivores and the number of tree species in tropical
forests", The American Naturalist, Vol 104, No 940, pp 501-528.

Lewis, C.H., 1988, "Making interactive graphics accessible", Panel
Discussion in Proc. CHI'88 Human Factors in Computing Systems, ACM, New
York, NY. ‘

Lewis, C.H., 1989, "New approaches to programming", Memorias del 14
Symposium Internacional de Sistemas Computacionales, Instituto

Tecnologico y de Estudios Superiores de Monterrey. Monterrey, N.L., Mexico.

Lewis, C.H., in press, "NoPump@G: Creating Interactive Graphics with
Spreadsheet Machinery", In Glinert, E.P. (Ed), Visual Programming
Environments, |IEEE Computer Society Press, Los Angeles, CA (to appear
early 1990)

Lewis, C.H. and G. M. Olson, 1987, "Can principles of cognition lower the
barriers to programming ?", In G. Olson (Ed.) Empirical Studies of

13

Programmers 2. Ablex, Norwood, NJ.

O' Donnell, M.J., 1985, Equational logic as a programmlng language,
MIT Press, Cambridge, MA.

Sethi, R., 1989, Programming Languages, Addison-Wesley, Reading, MA.

Smith, R.B., 1986, "The alternate reality kit", Proc. 1986 IEEE Workshop on
Visual Languages, IEEE, Washington, DC, p. 99.

Smith, R.B., 1987, "Experiences with the alternate reality kit: An example
of the tension between literalism and magic", IEEE Computer Graphics and
Applications , pp 42-50.

14

Bperatinas

& File Edit Create Special

r

janzen3

Figure 1. A series of curves, drawn to illustrate
an argument in tropical ecology, generated using
NoPumpl|

[34835 03 %2117

UuoL}28.44 pPho|) M0 ——050
uo(yaeu4 pnold a(ppild | 00|
uo1y9e14 pnoyJ ybiH ————-0G50

Figure 2. An interactive weather model

jopo dwia}

sugnuladg |B1oads 8)Bal] P31 94

Bulpes. Av Z

30 dwnd

= [l

3119AN)

00'0SC
NEN:R

OO®0O®

$8¥/AN)
- 9nyadid
%ans/11ds
peay
uMmoq
o8y
dn

e

auiyIBINTHAOL

Figure 3. A robotics ensemble simulated
in software.

suanviadg jeioeds

ajeaul)

1pi 84 »

A

